ar X iv : m at h / 04 05 36 9 v 1 [ m at h . D G ] 1 9 M ay 2 00 4 CONTACT SCHWARZIAN DERIVATIVES DANIEL

نویسنده

  • J. F. FOX
چکیده

H. Sato introduced a Schwarzian derivative of a contactomorphism of R 3 and and with T. Ozawa described its basic properties. In this note their construction is extended to all odd dimensions and to non-flat contact projective structures. The contact projective Schwarzian derivative of a contact projective structure is defined to be a cocycle of the contactomorphism group taking values in the space of sections of a certain vector bundle associated to the contact structure, and measuring the extent to which a contactomorphism fails to be an automorphism of the contact projective structure. For the flat model contact projective structure, this gives a contact Schwarzian derivative associating to a contactomorphism of R 2n−1 a tensor which vanishes if and only if the given contactomorphism is an element of the linear symplectic group acting by linear fractional transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 05 36 9 v 2 [ m at h . D G ] 1 9 N ov 2 00 4 CONTACT SCHWARZIAN DERIVATIVES DANIEL

H. Sato introduced a Schwarzian derivative of a contactomorphism of R 3 and with T. Ozawa described its basic properties. In this note their construction is extended to all odd dimensions and to non-flat contact projective structures. The contact projective Schwarzian derivative of a contact projective structure is defined to be a cocycle of the contactomorphism group taking values in the space...

متن کامل

ar X iv : m at h / 06 05 36 9 v 1 [ m at h . A G ] 1 4 M ay 2 00 6 Vanishing Cycles and Thom ’ s a f Condition ∗

We give a complete description of the relationship between the vanishing cycles of a complex of sheaves along a function f and Thom’s af condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004